hidimstat.ensemble_clustered_inference_pvalue#

hidimstat.ensemble_clustered_inference_pvalue(n_samples, group, list_ward, list_beta_hat, list_theta_hat, list_precision_diag, fdr=0.1, fdr_control='bhq', reshaping_function=None, adaptive_aggregation=False, gamma=0.5, n_jobs=None, verbose=0, **kwargs)[source]#

Compute and aggregate p-values across multiple bootstrap iterations using an aggregation method.

This function performs statistical inference on each bootstrap sample and combines the results using a specified aggregation method to obtain robust estimates. The implementation follows the methodology in [1].

Parameters:
n_samplesint

Number of samples in the dataset

groupbool

If True, uses group lasso p-values for multivariate outcomes

list_wardlist of AgglomerativeClustering

List of fitted clustering objects from bootstraps

list_beta_hatlist of ndarray

List of estimated coefficients at cluster level from each bootstrap

list_theta_hatlist of ndarray

List of estimated precision matrices from each bootstrap

list_precision_diaglist of ndarray

List of diagonal elements of covariance matrices from each bootstrap

fdrfloat, default=0.1

False discovery rate threshold for multiple testing correction

fdr_controlstr, default=”bhq”

Method for FDR control (‘bhq’ for Benjamini-Hochberg) Available methods are: * ‘bhq’: Standard Benjamini-Hochberg [2][3] * ‘bhy’: Benjamini-Hochberg-Yekutieli [3] * ‘ebh’: e-Benjamini-Hochberg [4]

reshaping_functioncallable, optional (default=None)

Function to reshape data before FDR control

adaptive_aggregationbool, default=False

Whether to use adaptive quantile aggregation

gammafloat, default=0.5

Quantile level for aggregation

n_jobsint or None, optional (default=None)

Number of parallel jobs. None means using all processors.

verboseint, default=0

Verbosity level for computation progress

**kwargsdict

Additional arguments passed to p-value computation functions

Returns:
beta_hatndarray, shape (n_features,) or (n_features, n_times)

Averaged coefficients across bootstraps

selectedndarray, shape (n_features,)

Selected features: 1 for positive effects, -1 for negative effects, 0 for non-selected features

References

Examples using hidimstat.ensemble_clustered_inference_pvalue#

Support Recovery on fMRI Data

Support Recovery on fMRI Data

Support recovery on simulated data (2D)

Support recovery on simulated data (2D)