API#

Base Classes#

base_variable_importance.BaseVariableImportance()

Base class for variable importance methods.

base_perturbation.BasePerturbation(...[, ...])

Feature Importance Classes#

LOCO(estimator, loss, method, n_jobs)

CFI(estimator, loss, method, n_jobs, ...[, ...])

PFI(estimator, loss, method, n_jobs, ...)

D0CRT(estimator[, method, estimated_coef, ...])

Implements distilled conditional randomization test (dCRT) without interactions.

Feature Importance functions#

clustered_inference(X_init, y, ward[, ...])

Clustered inference algorithm for statistical analysis of high-dimensional data.

clustered_inference_pvalue(n_samples, group, ...)

Compute corrected p-values at the cluster level and transform them back to feature level.

desparsified_lasso(X, y[, dof_ajdustement, ...])

Desparsified Lasso

desparsified_lasso_pvalue(n_samples, ...[, ...])

Calculate confidence intervals and p-values for desparsified lasso estimators.

desparsified_group_lasso_pvalue(beta_hat, ...)

Compute p-values for the desparsified group Lasso estimator using chi-squared or F tests

ensemble_clustered_inference(X_init, y, ward)

Ensemble clustered inference algorithm for high-dimensional statistical inference, as described in [Chevalier et al., 2022].

ensemble_clustered_inference_pvalue(...[, ...])

Compute and aggregate p-values across multiple bootstrap iterations using an aggregation method.

model_x_knockoff(X, y[, estimator, ...])

Model-X Knockoff

Samplers#

Helper Functions#

quantile_aggregation(pvals[, gamma, adaptive])

Implements the quantile aggregation method for p-values.

reid(X, y[, epsilon, tolerance, ...])

Residual sum of squares based estimators for noise standard deviation estimation.